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Abstract

This paper shows that any generalized network problew can be
transformed into a generalized transportation problem. Our approach
extends earlier procedures for transforming pure network problems to
ordinary transportation problems. Also we show that start and solution
algorithms developed for certain classes of generulized network problems

can be applied to any generalized network problem.




l. Introduction

The purpose of this paper is to show that any generalized network problen
can be transformed into a generalized transportation problem. Our approach
constitutes an extension of the procedures [ ¢,7 ] for transforming ordinary
("pure") network problems into pure transportation problems. Since it has
been shown [ 4 ] that any generalized network whose incidence matrix does
not have full row rank is equivalent to a pure network problem, our results
imply that such generalized networks are equivalent to ordinary transportation
problems.

Our propcsed transformation makes it possible to extend the range of
application or those procedures [ &,3 ] which have been developed for general-
ized network problems whose arc multipliers (arc amplication coefficients)
are between O and 1 permitting them to he applied to any generalized network.
(Note that it is not possible to develop a linear procedure for scaling an arbi-
trary generalized network problem to yield all arc multipliers in such a

range.) This extension follows from the fact that any generalized transp-rtation

problem can be made to assume the desired form by simply scaling each column of the
coefficient matrix to contain a 1 in its origin row and then dividing each desti-

nation row by the largest coefficient in the row. One computational aspect of

these observations is that the procedure in [ 3 ] can be used to yield a dual

feasible solution for any generalized network problem,

e o

s

¢. Transformation

For our purposes, a generalized network will be defined to consist of n
nodes or junction points that are connected pairwise by a collection of m directed

arcs (links). It is not necessary for all pairs of nodes to be joined. ’
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For each arc (i,j) in the network, we also define the following items:

1. xij is the flow from node i to node j.

2. cij is the cost of sending a single unit of flow from node i to

node j.

3. P 5 is the amplication (or attenuation) coefficient (or multiplier)

on the flow from node i to node j; i.e., if y units of flow leave

node i then pijy units enter node j.

Letting N denote the set of arcs, a generalized network problem may be stated as:

Problem I

Minimize T c X, (1.1)
(1,)en 13 %

subject to:
- X, a + ..X.. = d. i = l 2 eesoyll 102
Gharss T (gt T T bR (8

where d, is the amount of supply (demand) at node i, where the supply (demand)
at node 1 is denoted by a negative (positive) d, -

Each node in a network can be classified as a source, sink, or transshipment
node. A source node only has arcs emanating from it, while a sink node only has
arcs entering it. A transshipment node has arcs both entering it and emenating
from it. (Note: a transshipment node may have a supply or a demand.) In this
formulation, we assumz 1or simpiicity that there are ng sources, n trans-
shipment nodes, ny sinks and that these nodes are numbered in order from 1 to n.

That ic, the sources are numbered from 1 to ns the transshipment nodes fram

n +1ton +n and the sinks fromn + n
s s t s

+1 ton +n, +n._.
t s

t d

ny




Our main result is that the following generalized transportation is
equivalent to Problem I:

Problem II

t
i i i u ' ' ’ I3 - L]
minimize & i&x i3 + 4o ,iYi4n A (2.1)
(1,J+ns)e i=1 s s
cubject to:
» U = i = se s .
) . iﬂl)ik 3y 85 1 = 1,.00,n (2.2)
J
s
3 t 14 = = e s e .
[ . )ik.x ij+bi,i-ns a;, 1 =n_+ 1, sh 41y (2.3)
s
s
) Zl ' [
pL..Xx".. +VYy. ‘ R
(i,J+ns)eN ij” i j+n = bj’ J l,...,nt (2.4)
- ! ! = i = s s .
s )i& P iJ,x i3 bj’ J n, + 1, sy + ny (2.9)
)
s
x'ij >0 , (i,j+ns)eN (2.6)
. . >0 .
Yi4n 5 = » § = Lyeee,ny (2.7)
1 — 1 — ~ 3 2
where ¢ iy = ci,j+ns’ P'yy = pi,j+ns for (1,J+ns)eN
1 e~ I =
c i+ns,i =0 for i = l,2,...,nt
a, = =-d, fori = 1,...,n
i i s
ai = -di + B for 1 = ns + l,...,ns + nt
bj =3 for j = l,...,nt
bj = dJ+ns for j = r, + l,...,nt + ny

end B is a buffer to be specified later.
A succint way of describing the transformation procedure for obtaining

Problem II from Problem I is the following:




' .
1. Designate an origin for each source i of the network and let the supply

value a, of this origin i be the negative of the amount of supply di at

source i. ("Supplies™ are positive in transportation formulations.)

nY

Designate a destination j - n for each sink j of the network and let
k the demand value bj-n of this destination be the amount of demand

d. at sink j. °
3. For each transshipment node k designete an origin k and destination
[ k-n. Let a =-d4 +5 and bk-ns = B. (B is a buffer stock that
) must be large enough to insure that all yk,k-ns will be basic. A
procedure for determining the appropriate value of B when all

Pis >lorO0< Py <lorp,. > 0 is examined in a later section.)
Jo= - J

4. For each arc (i,j+ns) of the generalized network introduce an arc (i,J)

in the transportation problem with a cost c'ij and multiplies p'ij equal
to the cost and multiplier associated with the original arc. In addition,
for each transshipment node k, introduce an arc (k,k-ns) in the trans-

portation problem with a cost ¢! equal to zero and a multiplier

k,k=-n
p'k Ken equal to one, Let Yk ken denote the flow on this arc.
’-S :'s

3. Eguivalence

Theorem: Assume that 0 < pij <1, (i,j)eN and let B = - zdi « The solution
{i:di < 0}
X; 50 (i,i)eN is feasible (optimal) for Problem I if and only if the solution
x', . =x,.,(i,j)eN and y, . = g, - £ x'.. s, 1=mn+4l,...,n +n, is d
i,0-n, ij i,i-n i (i,j+né}QN s s 't

feasible (optimal) for Problem II. (Furthermore, the theorem is valid if the

objective is to maximize the functionals (1.1) and (2.1).) ‘1
Proof: 1

It is apparent that the functionals for Problems I and II will have the



same value for the solution as indicated. Thus, to prove the theorem, it
suffices simply to prove the feasibility assertion.
First assume that the solution xij’ (i,j)eN is feasible for Problem I.

We will show thau x', . = x.., (i,j)eN and y, . =8, - Laskh s
i,J-ng ij i,1-ns i (i,j+ns)€N ij

i=n +l,...,n +n,_ is feasible for Problem II. By assumption x', . , (i,j)eN
s 8% i,d-ng

satisfies (2.6) and clesrly by definition ¥i.4.n ond x'i Aoty satisfy (2.3).
J-s ,-S

= e B i - = . y :
Note that for i = 1,...,n, (1.2) is equal to & L;le d,. Since x Lot
i,j)eN s

x.. and . is a feasible solution for Problem I, then sz'i e = -d, or
i J i " P

Lx',. = 85 isl,...,ns; thus (2.2) is satisfied. Similarly, for
(i,j+ns)€N

i=n+m+l,...,n (1.2) is equal to 2 p. =&, ax'. . s=sx
+ J 2 -
- e (3,1)eN Ji 31 i i,J ng ij
and the feasibility of xi. for Problem I we have 2Pkt P = di or
*" (3 3)am 9% w8

=d, fori=n +n

i-n_ x Jyi-n i s ¢ ¥ 1reee,n. Setting k = i-n and

(J:l)GN J’

rewriting we obtain Zp' =b ( . Thus x',, satisfies (2.5).
(J,k+n )eN 3K J dk+ ij

= '
The equality yi,i-n &, - i j+n.)ikx ij’ i-ns+l,...,ns +n, can be
2

rewritten as s s ® -d, +B - “ )A;xi , and thus we have from (1.2)
i,j)eN

3. i +d. - B + Z:p =d:dsn + Y ...n 40 or
Zi’ ns : (3,i)eN 9% 5 Eidy s Wi, -
+ co . 1 - '_
(3, i)eNin Jl 1,i-ns =B, i-= n_ 1, sn + 1y Setting k = i n yields

:J' SB, k=l,...,n . Since
(J,k+ﬂ )eN J,k+n J,k+n k+ns,k t

L = 1
X ij = xi,j+ns and bj B for jal,...,nt the solution x 13

' =
’ ij pi,j+ns
satisfies (2.4).

Because all of the 0 < Py < 1, the flow out of any transshipment node i
J



cannot be greater than the total supply (B) less .max(di,O) - Thusy, . =
=
s

-d, +B - £ X.. is nonnegative for i =n_+ 1l,...,n_ + n,. Therefore (2.7)
: 3 (i,,j)GN 1] s S t

is satisfied and this completes the first half of the proof.

Next, assume x'ij is feasible for Problem II. We must now show that this
solution is feasible for Problem I. It is immediateliy apparent that (1.3) is
satisfied from (2.6); for i = l,...,ns (1.2) is satisfied from (2.2); and for
i=n_+n + l,...,n {1.2) is satisfied from (2.5).

For k = ne+l,...,ns+nt, if eguation k of (7.3) is subtracted from

equation k-n_ of (2.4) we obtain

-L x' .-y + XN it Xt +y =Db - .
(k,j+ns)eN kJ Ky ke, (i,k)eN Lk, L k,k-n Ky *
Since bk-ns = B and ak = -dk + B we have

i P 2 . .
- A pikxik.dk’ k n_ + l,...,ns+nt. Thus (1.2) is satisfied

(kx,3)eN = (i,k)eN
for all nodes 1, 2,...,n, and the proof is complete.

Corollary: Assume that Py; 2 1, (i,j)eN and let B= “ d. . The solution

{i:a, > 0]
i
X, . ic feasible (optimal) for Protlem I if and only if the solution x'i "
o T s
x..5(i,j)eN and y . . =a, - - x'. ,i=n_ +1,...,n_ +n_is feasible
: I : 1P 1 ns -3 (i,j+ns)cN ij s s t

(optimal) for Problem II. (Furthermore, the corvllary is valid if the objective

is to maximize the functionals (1.1) and (2.1)).

Proof: From the proof of the theorem, if x'iJ is a feasible solution for

Provlem II then % - ic a feasible solution for Problem I regardless of the

values of B and Py .- Similarly, the proof of the theorem establishes that
o

if X, . is a feasible solution to Problem I, then x'ij is a feasible solution



i1-n

to Problem 1I if and only if Y3 > 0. Thus it suffices simply to show that
3
s

v >
Jl,i-ns 20
To do this, note that Py > 1 for all (i,j) implies that the flow out of
any transshipment node i cannot be greater than the total demand(B)less max(O,di).

Otherwise, the amplification of the ilow leaving the node would render the solution

infeasible since this amplified flow coild not be absorted by the demand. Thus

)
)
Vi - = -d, + B - C X, . is nonnegative for B equal to the total demand and
i,i-n i PR ij

s i,j)eN
thie completes the nroof.
>
! It some of the multipliers Pij are less tl.an one and others are greater than one,
then the problem may contain "creator" and/or "destructor" loops (See Jewell [ 5 ].)
In such a case the solution region may be unbounded since arbitrarily large amounts

[ of flow may be created and later destruyed. Thus, it is not possible to derive a

sufficiently large value for the buffer B without assuming the nonexistence of creator

or destructor loops. From a computational standpoint, however, it is not necessary

to know a sufficiently large buffer size a-priori since the buffer can be successively
incressed until either an optimal solution ic found to tne generalized network or the
problem is determined to be infeasible or unbounded. Morewer, this manipulation of
the bu. fer can be done without interrupting the ordinary calculations and without
shifting from a primal method to a dual method. This may be seen as follows.

Set the buffer at some pusitive vaiue (i.e., B > 0) and try to solve the
problem using a special purpose primal approach. First rick an artificial primal
feasible starting basis conteining the Vi o variables. This can be ione by
considering the transportation tableau formzt for Problem II with a column of

artificial variables zj adjoined:

e



transshipment sink nodes Artificials
nodes

A Coo \

| .
| Y &) =20y
source .
noies |
z a =-=d
n_ ng o ong
Yn_+1,] 2z o fa ,,=-d . +B
transshipment i s ng. 3
nodes SR 5
N z a ==-d +B
in,,
ns n‘C’ + ns+n ns+nt nsmt
B L B b * e 00 b
+ +
ngtl |
Set yns+i,i=B’zns+i=|dne+iI’l=l’""nt’ and subtract the artificial variable
z . from origin congtraint n +i if d . < 0; otherwise add z . In addition
ns+1 s n +i ns+i
i = j= LY .- o of it . b + i
it n >n,. set x' i,n,+1 (1/p" 0,4+ bnt+i’ i=l,...,n, end set z, |al (1/p l’nt+2 n? il,

i=l,...,n_ and subtract z, if a -(1/p

. < O3 otherwise add z, Also
d i 1 i

)b
i, n, +1 ng+

set z,=a,, i=nd+l,...,ns and add it. (Note if x' »i=l,...,n. does not exist

i,n, +i d

t

then it is also an artificial variable and let p'i

If ns <n, set x' -ﬂ/p

d i,n +i b 1 +1 n,+i’""

t t

[}
n +i|’
t

(L, 4 0®

n,n
s’ 't

i=l,%..yn -l and z = |a_ - 5 (1/p"
& Rg Ng i=n_

i=n_+1,...,n Further set z, = |a - (1/p' ) b

+i’ da’ n_+i
ntl l,t

.th 1
i,nt+i) bnt+i|' Add 2, to the i— origin it

ay {1/p' 4 20, 1=21,2,...,n-1; otherwise subtract z,. Similarly add

i, n, +2 i

ngtd

or subtract z .
Ng

This is & basic artificial feasible solution since the set of the tirst
n +ant+n unit vectors is a subset of the span of the vectors associated with the
basic variables. This can be easily seen by observing that the vector associated with
the varieble 25 consist of the first ns+nt unit vectors end subtracting these unit
vectors from the other vectors associated with the otherbasic vectors yield the
remairing unit vectors.

Using this artificial primel basic feasible solution consider performing a

8 :
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Phase I optimization (i.e., minimizing the sum of the artificials). Throughout this
minimization ihe buffer can be manipulated in a manner which enables the Ysan i
=

variables to be kept basic. To see this first note that increasing the buffer B
will increase only the basic Vaera variables., Consequently, during Phase I when-
S’

] it is
ns+1,1

ever a variable x'ij would enter the basis in place ot some variable y
possiole to increase the buffer sufficiently to prevent such a replacement from
occurring., This is a consequence of thre fact +that the basis representation of any
candidate to enter the basis must have a positive coefficient associated with at
least one artificial variable. Thus, at the termination of Phase 1 all of the

y , variables will be basic. If any artificial variable is basic at a positive

n_+i,1i
vaiue then the generalized network problem is of course infeasible since increasing
the buffer will only increase the Yy +,4 variables and thus not affect the artificial
variables. (Specifically, there exizt no buffer values for which the generalized
transportation problem is feasible, consequently, the generalized network problem
is infeasible.)
After completing Phase I and pivoting all zero-valued artificials out of the
basis, it is either possible in Phase II to continue to keep the Y, +i,.variablesbasic
by the same procedure of manipulating the buffer, or, the generalizgd
network must be unbounded due to the fact that the incoming variable can be brought
into the basis at an infinite amount by infinitely increasing the buffer. If the problem
ie not unbounded Phase II will terminate with a finite optimal solution to the generalized
retwork sinceany increase in the buffer will not alter the solution value of the xéj
to the corresponding transportation problem. (This illustrates that the constraints

acsociated with the buffer act as '"regularization constraints" as defined by

Charnes [ 1 ].)
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